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ABSTRACT  

Density Variation of aqueous phase fluids flowing in a porous medium, resulting from spatial and temporal 

variation of solute concentration, often gives rise to unstable flow, and therefore has a significant effect on solute transport. 

Studies on simulating unstable flow and mixing of variable density fluids in seemingly homogeneous porous media are 

rare. In this study, one dimensional (1-D) model were developed to simulate unstable flow and mixing in a vertical, 

normally 1-D system. The 1-D numerical model was derived from a theoretical model to simulate the flow and the mixing 

of fluids with variable density and viscosity at the field scale. To evaluate the models, simulated results were compared 

with experimental data from displacement experiments in a vertical send column. The results show that the 1-D model 

provides fairly good prediction of breakthrough curves. 
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1. INTRODUCTION 

While considerable advances have been made in understanding the influence of heterogeneity of porous media on 

solute transport, less attention has been given to the dependence of solute transport on the density variation of the fluid, 

especially when gravitational instabilities occur(Given et al . ,1992 ;Welty and Gelhar ,1991).Significant variation of 

aqueous phase fluid density may occur, e.g., in seawater intrusion into costal aquifers(Huyakorn et al. ,1987),transport of 

solute due to agricultural practies(Mulqeen and Kirkham, 1972),gravity sinking of contaminant plumes(Kimmel and Braid 

,1980),and fluid fleow near salt domains and bedded salt deposits(Herbert et al.,1988).Based on the behaviour of some 

lechat eplumes in the Nrtherlands, van der Molen and van Ommen (1988) concluded that density effects probably more 

common than usually assumed. 

 While numerous laboratory studies have shown that density varations can result in significant flow and mixing in 

porous media (Wooding,1959,1962 Bachmat and Elrick,1970)Bigger and Nilesen,1964.Krupp and ELrick,1969, Rose and 

Passioura,1971 ; Oostrom et al,1992a,1992b;Schincariol and Schwartz,1990;Hayworth.1993; and Dane et al.,1994a ), 

numerical model studies of unstable flow and mixing of variable density fluids are much scarer (Elder,1967;koch and 

Zhang, 1991;Schincariol et al ,1994; Dane et al.,1994b).In constrast, considerable attension has been given to numerical 

model studies of viscous fingering(instability), especially in the chemical and petroleum engineering literature(Chang and 

Slattery,1988,1990).Although the behaviour of gravitational instability is similar to that of viscous fingering, considerable 

differences exist, as will be discussed later. 
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In this study we will focus on two numerical approaches to simulate unstable flow and mixing of a variable 

density fluid in normally one-dimensional (1-D) homogeneous porous medium.  

The approach is to simulate unstable flow and mixing in a normally 1-D system with a 1-D, coarse spatial 

discretization. In this approach, instabilities are considered as a larger scale dispersion process and flow and transport are 

viewed to be 1-D. The apparent dispersivity, therefore is afunction of the despersivity of an ‘ideal’ tracer, fluid properties 

and other related variables (Young, 1990). Since the fine spatial discretization approach is very computational intensive, 

and is difficult to be used in large scale problems, the coarse spatial discretization approach is more attractive for practical 

problems. The key to this approach is the development of an appropriate expression for the apparent dispersivity . 

Recently, an essentially 1-D theoretical model to simulate field scale flow and mixing of variable density and viscosity 

fluids, based on a stochastic analysis, was developed by Welty and Gelhar(1991,1992). The second objective of this 

research is, therefore, to develop an empirical 1-D model to simulate unstable flow and mixing due to the fluid density 

variation in a seemingly homogenous porous medium.  

2.1-D SIMULATION MODEL  

Before deriving the 1-D simulation model, we need to identity three length scales involved in the column 

displacements experiments, viz., the laboratory scale, the continuum scale and the pore scale.The laboratory scale is 

defined by the size of the column. The continuum scale is characterized by a REV (Bear,1972), while the pore scale is 

related to the size of the pore. Although the continuum approach, on which the governing equations for solute transport and 

fluid are based, widely accepted, the concept of a REV is still an issue of debate(Baveye and Sposito,1984). The 

dispersivity for a perfectly homogenous porous medium at the continuum scale is considered to result from pore scale 

heterogeneity (Gűven and Molz, 1988). The existence of a perfectly. Homogenous porous medium at the continuum scale 

can, however, be questioned. Welty and Gelhar(1991) pointed out that all sands exhibitsome degree of heterogeneity. 

Evidence of heterogeneity in a carefully packed sand column was given by Oostrom et al. (1992a). They employed a 

gamma radiation technique to determine in situ BTCs and a similar method as used in this study to determine effluent 

BTCs. For stable displacements, they showed that the logitudinal dispersivities, derived from in situ BTCs, were 

consistently smaller than those derived fronm effluent BTCs. Since the measuring scale of the gamma raditation technique 

is a scale betweem the continuum and the laboratory scale, the difference between measured dispersivities indicates the 

existence of continuum scale heterogeneity. The measured laboratory scale dispersivity, therefore, results from both pore 

scale and continuum scale heterogeneities. 

Due to the complexity of interaction between the porous medium heterogeneities at several scales and the density 

variation of fluids, it is very difficult, if not impossible, to derive a theoretical expression for the apparent dispersivity in a 

seemingly homogenous porous medium. In this study we assumed that a similar relation as between the apparent and the 

‘ideal’ tracer dispersivity at the field scale, developed by Welty and Gelhar(1991), can be applied to solute transport 

problems in a seemingly homogenous porous medium at the laboratory scale. In the derivation of this expression, we made 

no distinction between the notation of the field scale and the corresponding laboratory scale variables, except for the 

despervities. Following Welty and Gelhar (1991), the expression for apparent dispersivity at the field scale can be written 

as  

                                                                                                                                            (2.1) 
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Where 

                                                                                                                                         (2.2) 

,                                                                                                                                                                        (2.3) 

                                                                                                                                                              (2.4) 

Where  and  are the apparent longitudinal dispersivity and the longitudinal diapersivity for the ideal 

tracer at the field scale ,respectively,c is the mean contration at depth  ,  is the vertical distance in the porous medium 

(porosity downward and = 0 at the top of the porous medium),t is the time,γ is the approximately constant flow factor 

(Wetly and Gelhar ,1991),ρ is the mean fluid density at depth  ,µ is the mean liquid viscosity at depyh  ,k is the mean 

permeability at depth ,g is the gravitational field strength ,q is the Darcy flux and n is the porosity .A detailed derivation 

of equation can be found in Welty and Gelhar (1991).It should be noted that several variables in the 1-D model are 

averaged ones over the horigental croos section of the vertical ,nominally 1-Dsystem.  

 Substituting the expressions for and into Equation yields: 

                                                                                            (2.5) 

If the viscosity gradient effect on solute transport is assumed to be negligible (Galeati et al., 1992), Equation can 

be rewritten as  

                                                                                                                      (2.6) 

If we then approximate  by 

                                                                                                       (2.7) 

Where  and  are the concentration and the corresponding density of the solution introduced at 

the porous medium, and  is the density of the background fluid (pure water), can be expressed as  
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                                                                                                                   (2.8) 

Where  

                                                                                                                                               (2.9) 

and 

                                                                                                                                               (2.10) 

Combining Equation (2.1) and (2.8), we obtain  

                                                                                                    (2.11) 

Based on the assumption about dispersivity relation at the field and the laboratory scale, we have  

                                                                                                  (2.12) 

Where  and  are the apparent longitudinal dispersivity and the longitudinal dispersivity for the ideal 

tracer at the laboratory scale, respectively. 

The 1-D governing equation to modal solute transport at the laboratory scale is 

 -β                                                                                                                                   (2.13) 

Where D is the apparent dispersion coefficient for variable density fluid at the laboratory scale: 

                                                                                                           (2.14) 

β =                                                                                                                                                                  (2.15) 
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                                                                                                                                (2.16) 

Where  is the molecular diffusion coefficient .Subject to the boundary and initial condition, Equation (2.13), 

coupled with the expression for the apperant dispersion coefficient, can be solved numerically by Ritz approximation 

method. With initial and boundary conditions are: 

                                                                                                 (2.17) 

                                                                                      (2.18) 

 ( , 0) = θε << 1  at  > 0; t = 0                                                                                                      (2.19) 

  = 0 and   =1 at t ≥0                                                                                             (2.20) 

3. SOLUTION BY RITZ APPROXIMATION METHOD  

Step: 1 The weak form of the Equation is  

0=     (3.1) 

Putting V =  ; i=1, 2 which satisfies the boundary conditions. 

Step:2 We must select v = φi ; i = 1, 2 in the two-parameter Ritz approximation to satisfy the boundary conditions 

φi (0) = C0, φi (1) = C1 ; i = 1, 2. We choose the following functions as, 

   =   

and 

   = +                                                                                                        (3.2) 

The Ritz method seeks an approximate solution to equation (2.5) in the form of a finite series 

 ( , t) =                                                                                         (3.3) 

Where the constants bj ; j = 1,2 called Ritz coefficients are chosen such that equation (3.1) holds for v = φi ; i = 

1,2. 

Step: 3 Substituting the values from equation (3.3) with v = φi ; i = 1,2 in the equation (3.1). We get Ritz equation as, 

a1′ A11 + a2′A12 + a1 B11 + a2 B12 + β a1 E11 + β a2 E12  

-D φ1 (a1 φ1′ + a2φ2′ ) z' 0=  +D φ1 (a1 φ1′ + a2φ2′ ) z' 1=  = 0                                                                           (3.4) 
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and  

a1′ A21 + a2′A22 + a1 B21 + a2 B22 +β a1 E21 + β a2 E22  

-D φ2 ( a1 φ1′ + a2φ2′ ) z' 0= + D φ2 ( a1 φ1′ + a2φ2′ ) z' 1=  = 0                                                                           (3.5) 

Where 

 

 

 

                                                                                                (3.6) 

 

           (3.7) 

                                                                                                (3.8) 

    

 

 

Step: 4 Simplification of equation (3.4) and (3.5) with the help of Aij, Bij and Eij ; i, j = 1, 2 is given by  

                                                 (3.9) 

and 

                     (3.10) 

 

 

a1′  =  
∂a1 
∂t 

;  a2′  =  
∂a2 
∂t 

φ1′  =  
∂φ1 
∂  

;  φ2′  =  
∂φ2 
∂  

 ∫ 
0 

1 

φi ⋅ φj d  ;   i, j = 1, 2 Aij  =  

 ∫ 
0 

1 

φi ′ ⋅ φj ′ d  ;   i, j = 1, 2 Bij  =  

 ∫ 
0 

1 

φi ⋅ φj ′ d  ;   i, j = 1, 
2

Eij  =  
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Step: 5 the residual of the approximation in the initial condition is 

y = C ( , 0) - ε                                                                (3.11) 

Using the Galerkin method, we have 

 

                                                     (3.12) 

 

means 

 

              

                                                                                                                                                                            (3.13) 

and 

 

 

 

 

                                                                                                                                                                                            (3.14) 

We obtain approximate initial conditions 

 a1(0) ≅ 0.0044 and a2(0) ≅ - 0.0036                                                                           (3.15) 

Step: 6 We can solve the ordinary differential equation (3.9) and (3.10) subject to the initial condition (3.15) by exact 

means. Using Laplace transform method we obtain  

L  L  

Inverting and, we get  

  

  

Step: 7 Required Solution of the problem is 

C   .  

 +   

 ∫ 
0 

1 

[ C ( , 0 ) - ε ] φi  =  0 ;  i = 1, 2 

a1(0) 

3 
[ C1  + C0C1 + C0   ]   + [ 3C1 + 4C0C1 + 5C0 ] 

2 2 2 2 a2(0) 

12 
–  

εC1 

2 
–  

εC0 

2 
=  0 

[ 3C1 + 4C0C1 + 5C0 ]   + 
2 2 a1(0) 

12 
[ 3C1 + 4C0C1 + 8C0 ] 

2 2 a2(0) 

15 

–  
εC1 

3 
–  

2εC0 

3 
=  0 
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The following values of the various parameters have been considered in the present analysis and for graphical 

representation 

 C0 = 0.01,  C1 = 0.9, ε = 0.001 

4. GRAPHICAL AND NUMERICAL REPRESENTATION  

Graph 1
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Table: 1 

t c(z',t),z'=0.2 c(z',t),z'=0.4 c(z',t),z'=0.6 
0 0 0 0 

0.1 4.49827E-06 1.79925E-05 4.04827E-05 
0.2 9.253E-06 3.7012E-05 8.3277E-05 
0.3 1.4213E-05 5.6852E-05 0.000127917 
0.4 1.93327E-05 7.73308E-05 0.000173994 
0.5 2.45778E-05 9.83112E-05 0.0002212 
0.6 2.99259E-05 0.000119703 0.000269333 
0.7 3.53652E-05 0.000141461 0.000318287 
0.8 4.08926E-05 0.00016357 0.000368034 
0.9 4.65112E-05 0.000186045 0.000418601 
1 5.22282E-05 0.000208913 0.000470054 
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Graph 2
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Table: 2 

z' c(z',t),t=0.2 c(z',t),t=0.4 c(z',t),t=0.6 

0 0 0 0 
0.1 2.31325E-06 4.83317E-06 3.12203E-05 
0.2 9.253E-06 1.93327E-05 0.000124881 
0.3 2.08193E-05 4.34986E-05 0.000280983 
0.4 3.7012E-05 7.73308E-05 0.000499525 
0.5 5.78313E-05 0.000120829 0.000780508 
0.6 8.3277E-05 0.000173994 0.001123932 
0.7 0.000113349 0.000236826 0.001529796 
0.8 0.000148048 0.000309323 0.001998101 
0.9 0.000187373 0.000391487 0.002528846 
1 0.000231325 0.000483317 0.003122032 

 

5. CONCLUSIONS 

A 1-D modal to simulate unstable flow and mixing of variable density fluids in a vertical ,normaly 1-D system 

,filed with a seemingly homogenous porous medium ,were developed .To evaluate theSimulation models ,displacement 

experiments were condected in a vertical column filled with either a fine or a medium sand. 

• The experimental results demonstrated that the dispersion zone  
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• Increased with decreasing Darcy flux for a given input solute concentration. 
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